Ultra-light asymmetric photovoltaic sandwich structures
نویسندگان
چکیده
This work evaluated the possibility of using silicon solar cells as load-carrying elements in composite sandwich structures. Such an ultra-light multifunctional structure is a new concept enabling weight, and thus energy, to be saved in high-tech applications such as solar cars, solar planes or satellites. Composite sandwich structures with a weight of 800 g/m were developed, based on one 140 lm thick skin made of 0/90 carbon fiber-reinforced plastic (CFRP), one skin made of 130 lm thick mono-crystalline silicon solar cells, thin stress transfer ribbons between the cells, and a 29 kg/m honeycomb core. Particular attention was paid to investigating the strength of the solar cells under bending and tensile loads, and studying the influence of sandwich processing on their failure statistics. Two prototype multi-cell modules were produced to validate the concept. The asymmetric sandwich structure showed balanced mechanical strength; i.e. the solar cells, reinforcing ribbons, and 0/90 CFRP skin were each of comparable strength, thus confirming the potential of this concept for producing stiff and ultra-lightweight solar
منابع مشابه
Quaternary Cu (InxGa1-x) Se2 Nanoparticles Synthesis Using Heating-up Method for Photovoltaic Applications
In this paper, tetragonal chalcopyrite (CIGS) Cu(InxGa1-x)Se2 with x=0, 0.5, 0.8, 1 are synthesized by heating-up method. These nanoparticle structures differ in morphology and absorption properties due to the synthesis temperatures of 250, 255, 260, 265, 270 and 280 ºC, and gallium molar ratio over the total gallium and indium contents. These features are studied using scanning electron m...
متن کاملFinite-Difference Time-Domain Simulation of Light Propagation in 2D Periodic and Quasi-Periodic Photonic Structures
Ultra-short pulse is a promising technology for achieving ultra-high data rate transmission which is required to follow the increased demand of data transport over an optical communication system. Therefore, the propagation of such type of pulses and the effects that it may suffer during its transmission through an optical waveguide has received a great deal of attention in the recent years. We...
متن کاملLarge Deflection of Geometrically Asymmetric Metal Foam Core Sandwich Beam Transversely Loaded by a Flat Punch
The objective of this work is to study the large deflection of geometrically asymmetric metal foam core sandwich beam under transverse loading by a fiat punch. A yield criterion is proposed for geometrically asymmetric metal foam core sandwich structures, and then analytical solution for the large deflection of a fully clamped slender sandwich beam is obtained, in which the interaction of bendi...
متن کاملEffects of the asymmetric behavior of the shape memory alloy on nonlinear dynamic responses of thick sandwich plates with embedded SMA wires
In the present article, the dynamic behavior of sandwich plates with embedded shape memory alloy (SMA) wires is evaluated for two cases wherein (i) the stress-strain curve of the superelastic behavior of the SMA wires is symmetric and (ii) the mentioned curve is non-symmetric. A modified version of Brinson’s constitutive model is proposed and used. The high non-linearity in the behavior stems f...
متن کاملAsymmetric light propagation in composition-graded semiconductor nanowires
Asymmetric light propagation is crucial to the development of optical-based functional components in nanophotonics. Diverse configurations and structures have been proposed to allow asymmetrical propagation of photonic signal, but on-chip integration is difficult to achieve due to their complex structure and/or relatively large footprint. Here we report the first design and realization of asymm...
متن کامل